InterviewSolution
Saved Bookmarks
| 1. |
√(3+4√-7) |
|
Answer» Let, (a + ib)2 = 3 + 4√7 i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = 3 + 4√7 i Since i2 = -1 ⇒ a2 - b2 + 2abi = 3 + 4√7 i Now, separating real and complex parts, we get ⇒ a2 - b2 = 3 …………..eq.1 ⇒ 2ab = 4√7 …….. eq.2 ⇒ a = 2√7/b Now, using the value of a in eq.1, we get ⇒ \((\frac{2\sqrt7}{b})^2\) – b2 = 3 ⇒ 12 – b4 = 3b2 ⇒ b4 + 3b2 - 28 = 0 Simplify and get the value of b2, we get, ⇒ - b2 = -7 or b2 = 4 as b is real no. so, b2 = 4 b = 2 or b = - 2 Therefore, a = √7 or a = -√7 Hence the square root of the complex no. is √7 + 2i and -√7 - 2i. |
|