InterviewSolution
| 1. |
√-4-3i |
|
Answer» Let, (a + ib)2 = - 4 - 3i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = -4 -3i Since i2 = -1 ⇒ a2 - b2 + 2abi = - 4 - 3i Now, separating real and complex parts, we get ⇒ a2 - b2 = - 4…………..eq.1 ⇒ 2ab = - 3…….. eq.2 ⇒ a = - 3/2b Now, using the value of a in eq.1, we get ⇒ \((-\frac{3}{2b})^2\) – b2 = - 4 ⇒ 9 – 4b4 = -16b2 ⇒ 4b4 - 16b2 - 9 = 0 Simplify and get the value of b2, we get, ⇒ b2 = 9/2 or b2 = - 2 As b is real no. so, b2 = 9/2 b = \(\frac{3}{\sqrt2}\) or b = -\(\frac{3}{\sqrt2}\) Therefore, a = -\(\frac{1}{\sqrt2}\) or a = \(\frac{1}{\sqrt2}\) Hence the square root of the complex no. is -\(\frac{1}{\sqrt2}\) + \(\frac{3}{\sqrt2}\)i and \(\frac{1}{\sqrt2}\) - \(\frac{3}{\sqrt2}\)i. |
|