InterviewSolution
Saved Bookmarks
| 1. |
√-7+24i |
|
Answer» Let, (a + ib)2 = - 7 + 24i Now using, (a + b)2 = a2 + b2 + 2ab a2 + (bi)2 + 2abi = -7 + 24i Since i2 = -1 a2 - b2 + 2abi = -7 + 24i Now, separating real and complex parts, we get ⇒ a2 - b2 = - 7…………..eq.1 ⇒ 2ab = 24…….. eq.2 ⇒ a = 12/b Now, using the value of a in eq.1, we get ⇒ (12/b)2 – b2 = - 7 ⇒ 144 – b4 = -7b2 ⇒ b4 - 7b2 - 144 = 0 Simplify and get the value of b2, we get, ⇒ b2 = - 9 or b2 = 16 As b is real no. so, b2 = 16 b = 4 or b = - 4 Therefore, a = 3 or a = - 3 Hence the square root of the complex no. is 3 + 4i and - 3 - 4i. |
|