1.

√-7+24i

Answer»

Let, (a + ib)2 = - 7 + 24i

Now using, (a + b)2 = a2 + b2 + 2ab

a2 + (bi)2 + 2abi = -7 + 24i

Since i2 = -1

a2 - b2 + 2abi = -7 + 24i

Now, separating real and complex parts, we get

⇒ a2 - b2 = - 7…………..eq.1

⇒ 2ab = 24…….. eq.2

⇒ a = 12/b

Now, using the value of a in eq.1, we get

⇒ (12/b)2 – b2 = - 7

⇒ 144 – b4 = -7b2

⇒ b4 - 7b2 - 144 = 0

Simplify and get the value of b2, we get,

⇒ b2 = - 9 or b2 = 16

As b is real no. so, b2 = 16

b = 4 or b = - 4

Therefore, a = 3 or a = - 3

Hence the square root of the complex no. is 3 + 4i and - 3 - 4i.



Discussion

No Comment Found