InterviewSolution
Saved Bookmarks
| 1. |
Express the following complex number in polar form and exponential form. -i |
|
Answer» Let z = -i = 0 – i a = 0, b = -1 z lies on negative imaginary Y-axis. |z| = r = \(\sqrt{a^2+b^2}=\sqrt{0^2+(-1)^2}=1\) and θ = amp z = 270° = \(\frac{3\pi}2\) The polar form of z = r (cos θ + i sin θ) = 1 (cos 270° + i sin 270°) = 1\((cos\frac{3\pi}2+i sin\frac{3\pi}2)\) The exponential form of z = reiθ = e\(\frac{3\pi}2i\) |
|