InterviewSolution
Saved Bookmarks
| 1. |
Express the following complex numbers in the standard form a + i b :\(\frac{3+2i}{-2+i}\) |
|
Answer» Given: ⇒ a + ib = \(\frac{3+2i}{-2+i}\) Multiplying and dividing with -2-i ⇒ a + ib = \(\frac{3+2i}{-2+i}\) x \(\frac{-2-i}{-2-i}\) ⇒ a + ib = \(\frac{3(-2-i)+2i(-2-i)}{(-2)^2-(i)^2}\) We know that i2=-1 ⇒ a + ib = \(\frac{-6-3i-4i-2i^2}{4-i^2}\) ⇒ a + ib = \(\frac{-6-7i-2(-1)}{4-(-1)}\) ⇒ a + ib = \(\frac{-4-7i}{5}\) ∴ The values of a, b are \(-\frac{4}{5}\), \(-\frac{7}{5}\) . |
|