1.

Express the following complex numbers in the standard form a + i b :\(\frac{3+2i}{-2+i}\)

Answer»

Given: 

⇒ a + ib = \(\frac{3+2i}{-2+i}\)

Multiplying and dividing with -2-i 

⇒ a + ib = \(\frac{3+2i}{-2+i}\) x \(\frac{-2-i}{-2-i}\)

⇒  a + ib = \(\frac{3(-2-i)+2i(-2-i)}{(-2)^2-(i)^2}\) 

We know that i2=-1

⇒ a + ib = \(\frac{-6-3i-4i-2i^2}{4-i^2}\) 

⇒ a + ib = \(\frac{-6-7i-2(-1)}{4-(-1)}\) 

⇒ a + ib = \(\frac{-4-7i}{5}\) 

∴ The values of a, b are \(-\frac{4}{5}\)\(-\frac{7}{5}\) .



Discussion

No Comment Found