1.

Express the following complex numbers in the standard form a + ib : \(\frac{1-i}{1+i}\)

Answer»

Given: 

⇒ a + ib = \(\frac{1-i}{1+i}\)

Multiplying and dividing by 1-i

⇒ a + ib = \(\frac{1-i}{1+i}\)  x  \(\frac{1-i}{1-i}\)

⇒ a + ib =  \(\frac{1^2+i^2-2(1)(i)}{1^2-(i)^2}\)

We know that i= -1

⇒ a + ib = \(\frac{1+(-1)-2i}{1-(-1)}\) 

⇒ a + ib = \(\frac{-2i}{2}\) 

⇒ a + ib = -i

⇒ a + ib = 0 - i

∴ The values of a, b is 0, -1.



Discussion

No Comment Found