InterviewSolution
Saved Bookmarks
| 1. |
Find the derivative of function y = 1 + x + x2 + …. + x50 at x = 1. |
|
Answer» Given, \(y=1+x+x^2+...+x^{50}.\) ∴ \(\frac{dy}{dx}=\frac{d}{dx}[1+x+x^2+...+x^{50}]\) \(=\frac{d}{dx}1+\frac{d}{dx}x+\frac{d}{dx}x^2+...+\frac{d}{dx}x^{50}\) ⇒ \(\frac{dy}{dx}\)= 1+2x+3x2+....+50x49 ∴ At x = 1, \(\frac{dy}{dx}\)= 1+2+3+....+50 = \(\frac{50(50+1)}{2}\) = 25 × 51 = 1275. |
|