InterviewSolution
Saved Bookmarks
| 1. |
Find the derivative of logx from first principle. |
|
Answer» Let f(x) = log x ∴ \(f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \(=\lim\limits_{h \to 0}\frac{log(x+h)-logx}{h}\) \(=\lim\limits_{h \to 0}\frac{log(\frac{x+h}{x})}{h}\) \(=\lim\limits_{h \to 0}\frac{log(1+\frac{h}{x})}{h}\) \(=\lim\limits_{h \to 0}\frac{log(1+\frac{h}{x})}{\frac{h}{x}}\times\frac{1}{x}\) \(=1\times\frac{1}{x}\) = \(\frac{1}{x}\) |
|