1.

Find the derivative of logx from first principle.

Answer»

Let 

f(x) = log x

∴ \(f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\)

\(=\lim\limits_{h \to 0}\frac{log(x+h)-logx}{h}\)

\(=\lim\limits_{h \to 0}\frac{log(\frac{x+h}{x})}{h}\)

\(=\lim\limits_{h \to 0}\frac{log(1+\frac{h}{x})}{h}\)

\(=\lim\limits_{h \to 0}\frac{log(1+\frac{h}{x})}{\frac{h}{x}}\times\frac{1}{x}\)

\(=1\times\frac{1}{x}\) 

\(\frac{1}{x}\)



Discussion

No Comment Found