1.

Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|

Answer»

Let z = x + iy

|z + 8| = |z – 4|

|x + iy + 8| = |x + iy – 4|

|(x + 8) + iy | = |(x – 4) + iy|

\(\sqrt{(x+8)^2+y^2}=\sqrt{(x-4)^2+y^2}\)

(x + 8)2 + y2 = (x - 4)2 + y2

x2 + 16x + 64 + y2 = x2 – 8x + 16 + y2

16x + 64 = -8x + 16

24x + 48 = 0

∴ x + 2 = 0



Discussion

No Comment Found