InterviewSolution
Saved Bookmarks
| 1. |
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i | = |z + 2 + 2i| |
|
Answer» Let z = x + iy |z – 2 – 2i| = |z + 2 + 2i| |x + iy – 2 – 2i | = |x + iy + 2 + 2i | |(x – 2) + i(y – 2)| = |(x + 2) + i(y + 2)| \(\sqrt{(x-2)^2+(y-2)^2}=\sqrt{(x+2)^2 + (y+2)^2}\) (x – 2)2 + (y – 2)2 = (x + 2)2 + (y + 2)2 x2 – 4x + 4 + y2 – 4y + 4 = x2 + 4x + 4 + y2 + 4y + 4 - 4x – 4y = 4x + 4y 8x + 8y = 0 x + y = 0 y = -x |
|