 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Find the equation of the internal bisector of angle `B A C`of the triangle `A B C`whose vertices `A ,B ,C`are`(5,2),(2,3)a n d(6,5)`respectively. | 
| Answer» `(x_1,y_1),(x_2,y_2)` `y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)` Equation of AC `y-2=(5-2)/(6-5)(x-5)` `y-2=3(x-5)` `y-2=3x-15` `3x-y-13=0` Equation of AB `y-2=(3-2)/(2-5)(x-5)` `y-2=-1/3(x-5)` `x+3y-11=0` `|(a_1x+b_1y+c_1)/sqrt(a_1^2+b_1^2)|=pm|(a_2x+b_2y+c_2)/sqrt(a_2^2+b_2^2)|` `3x-y-13=0` `x+3y-11=0` `(3x-y-13)/sqrt(9+1)=pmm(x+3y-11)/sqrt(1+9` `3x-y-13=x+3y-11` `2x-4y-2=0` `3x-y-13=-x-3y+7` `4x+2y-24=0` `m=(-4)/2=-2` `AB=x+3y-11=0` `tantheta=|(m_1-m_2)/(1+m_1m_2)|=|((-1/3)-(-2))/(1+(-1/3)(-2))|` `tantheta=((-1/3)+2)/(1+(2/3))` `=(5/3)/(5/3)=1` `tantheta=45^@`. | |