InterviewSolution
Saved Bookmarks
| 1. |
Find the number of solutions of z2 + |z|2 = 0. |
|
Answer» Given: ⇒ z2+|z|2=0 Let us assume z=x+iy ⇒ (x+iy)2 + \(\sqrt{(x^2+y^2)^2}\) = 0 ⇒ x2+(iy)2+2(x)(iy)+x2+y2=0 ⇒ 2x2+y2+i2y2+i2xy=0 We know that i2=-1 ⇒ 2x2+y2-y2+i2xy=0 ⇒ 2x2+i2xy=0 Equating Real and Imaginary parts on both sides we get, ⇒ 2x2=0 and 2xy=0 ⇒ x=0 and y\(\varepsilon\)R ∴ z=0+iy where y\(\varepsilon\)R. i.e, Infinite solutions. |
|