1.

If √3tanθ = 3sinθ, find the value of sin2θ - cos2θ

Answer»

√3tanθ = 3sinθ

√3\(\frac{sinθ}{cosθ}\) = 3 x 3sinθ

\(\frac{1}{cosθ}\) = √3

cosθ = \(\frac{1}{\sqrt{3}}\) 

Now, sin2θ - cos2θ = 1 - cos2θ - cos2θ

= 1 - 2 cos2θ

= 1 - 2 x \(\Big(\frac{1}{\sqrt{3}}\Big)^2\) 

= 1 - 2 x \(\frac{1}{3}=\frac{1}{3}\)



Discussion

No Comment Found