InterviewSolution
Saved Bookmarks
| 1. |
If a cos θ + b sin θ and a sin θ − b cos θ = 3, then a2 + b2 = A. 7 B. 12 C. 25 D. None of these |
|
Answer» Given: a cosθ + b sinθ = 4 Squaring both sides, we get (a cosθ + b sinθ)2 = 42 ⇒ a2 cos2θ + b2 sin2θ + 2ab sin θ cos θ = 16 …(i) and a sinθ – b cosθ = 3 Squaring both sides, we get (a sinθ – b cosθ)2 = 32 ⇒ a2 sin2θ + b2 cos2θ – 2ab sinθ cosθ = 9 …(ii) To find: a2 + b2 Adding (i) and (ii), we get a2 cos2θ + b2 sin2θ + 2ab sinθ cosθ + a2 sin2θ + b2cos2θ – 2ab sinθ cosθ = 16 + 9 ⇒ a2 (sin2θ + cos2θ) + b2 (sin2 θ + cos2θ) = 25 ⇒ a2 + b2 = 25 [∵ sin2θ + cos2θ = 1] |
|