1.

If a = cos θ + i sin θ, then  \(\frac{1+a}{1-a}\) =A. cot \(\frac{θ}{2}\)B. cot θC. i cot \(\frac{θ}{2}\)D. i tan \(\frac{θ}{2}\)

Answer»

\(\frac{1+a}{1-a}\) = \(\frac{1+(cosθ + isinθ)}{1-(cosθ + isinθ)}\) = \(\frac{1+(cosθ + isinθ)}{1-(cosθ - isinθ)}\times \frac{(1-(cosθ )+ isinθ}{(1-cosθ )+ isinθ}\)

\(\frac{2isinθ}{2-2cosθ}\) 

= 0 + \(i\frac{sinθ}{1-cosθ}\) 

\(icot\frac{θ}{2}\) 



Discussion

No Comment Found