1.

If a1, a2, a3, ....., an are in H.P. then what will (a1a2 + a2a3 + ..... + an – 1 an) equal to?

Answer»

a1, a2, a3 ..... , an are in H.P.

⇒ \(\frac{1}{a_1}\),\(\frac{1}{a_2}\),\(\frac{1}{a_3}\) ......., \(\frac{1}{a_n}\) are in A.P

If d is the common difference of the A.P., then

\(\frac{1}{a_2}\) - \(\frac{1}{a_1}\) = d, \(\frac{1}{a_3}\) - \(\frac{1}{a_2}\) = d,......, \(\frac{1}{a_n}\)\(\frac{1}{a_{n-1}}\) = d

⇒ \(\frac{a_1-a_2}{a_1a_2}\) = d,  \(\frac{a_2-a_3}{a_2a_3}\) = d, ....., \(\frac{a_{n-1}-a_n}{a_{n-1}\,a_n}\) = d

⇒ a1 – a2 = a1a2d, a2 – a3 = a2a3d, ..... , an – 1 – an = an – 1 an

⇒ (a1 – a2 + a2 – a3 + ..... + an – 1 – an) = a1a2d + a2a3d + ..... + an – 1 and

⇒ (a1 – an) = (a1a2 + a2a3 + ..... + an – 1 an)d                          ....(i)

Also, \(\frac{1}{a_1}\),\(\frac{1}{a_2}\),.......\(\frac{1}{a_n}\) is an A.P with common difference d

⇒ \(\frac{1}{a_n}\) = \(\frac{1}{a_1}\) + (n - 1)d ⇒ (n - 1)d = \(\frac{1}{a_n}\) - \(\frac{1}{a_1}\) ⇒ (n - 1)d = \(\frac{a_1-a_n}{a_1a_n}\)

⇒ a1 – an = (n – 1)d a1an                   ...(ii)

From (i) and (ii) 

(n – 1)d a1an = (a1a2 + a2a3 + .... + an – 1an) d 

⇒ (a1a2 + a2a3 + .... + an – 1an) = (n – 1) a1an.



Discussion

No Comment Found