1.

Let the positive numbers a, b, c, d be in A.P. Then, abc, abd, acd, bcd are(a) NOT in A.P./G.P./H.P (b) In A.P. (c) In G.P. (d) In H.P

Answer»

(d) In H.P.

If a, b, c, d are in A.P. 

⇒ d, c, b, a are in A.P.

⇒ \(\frac{d}{abcd}\)\(\frac{c}{abcd}\)\(\frac{b}{abcd}\)\(\frac{a}{abcd}\) are in A.P. 

(Dividing all terms by abcd)

⇒ \(\frac{1}{abc}\)\(\frac{1}{abd}\)\(\frac{1}{acd}\)\(\frac{1}{bcd}\) are in A.P.

⇒ abc, abd, acd, bcd are in H.P.



Discussion

No Comment Found