InterviewSolution
| 1. |
If \(\frac{a-x}{px}\) = \(\frac{a-y}{qy}\) = \(\frac{a-z}{rz}\) and p, q, r are in A.P., show that x, y, z are in H.P. |
|
Answer» Let \(\frac{a-x}{px}\) = \(\frac{a-y}{qy}\) = \(\frac{a-z}{rz}\) = k Then, \(\frac{a-x}{px}\) = k ⇒ \(\frac{a-x}{kx}\) = p ⇒ p = \(\frac{1}{k}\)\(\bigg(\frac{a}{x}-1\bigg)\) Similarly, q = \(\frac{1}{k}\)\(\bigg(\frac{a}{y}-1\bigg)\), r = \(\frac{1}{k}\)\(\bigg(\frac{a}{z}-1\bigg)\) Now, p, q, r are in A.P \(\frac{1}{k}\)\(\bigg(\frac{a}{x}-1\bigg)\),\(\frac{1}{k}\)\(\bigg(\frac{a}{y}-1\bigg)\),\(\frac{1}{k}\)\(\bigg(\frac{a}{z}-1\bigg)\) are in A.P. ⇒ \(\frac{a}{x}-1\), \(\frac{a}{y}-1\), \(\frac{a}{z}-1\) are in A.P. (Multiplying each term by k) ⇒ \(\frac{a}{x}\), \(\frac{a}{y}\), \(\frac{a}{z}\) are in A.P. (Adding 1 to each term) ⇒ \(\frac{1}{x}\), \(\frac{1}{y}\),\(\frac{1}{z}\) are in A.P. (Dividing each term by a) ⇒ x, y, z are in H.P |
|