InterviewSolution
Saved Bookmarks
| 1. |
If H be the harmonic mean between x and y, then prove that \(\frac{H+x}{H-x}\) + \(\frac{H+y}{H-y}\) = 2. |
|
Answer» H being the H.M. between x and y ⇒ H = \(\frac{2xy}{x+y}\) ⇒ \(\frac{H}{x}\) = \(\frac{2y}{x+y}\) and \(\frac{H}{y}\) = \(\frac{2x}{x+y}\) ⇒ \(\frac{H+x}{H-x}\) = \(\frac{2y+x+y}{2y-(x+y)}\) and \(\frac{H+y}{H-y}\) = \(\frac{2x+x+y}{2x-(x+y)}\) (Using Componendo and Dividendo) ⇒ \(\frac{H+x}{H-x}\) = \(\frac{3y+x}{y-x}\) and \(\frac{H+y}{H-y}\) = \(\frac{3x+y}{x-y}\) ∴ \(\frac{H+x}{H-x}\) + \(\frac{H+y}{H-y}\) = \(\frac{3y+x}{y-x}\) + \(\frac{3x+y}{x-y}\) = \(\frac{3y+x-3x-y}{y-x}\) = \(\frac{2(y-x)}{y-x}\) = 2. |
|