1.

Insert three harmonic means between 5 and 6.

Answer»

3 harmonic means between 5 and 6

⇒ 3 arithmetic means between \(\frac{1}{5}\) and \(\frac{1}{6}\).

Let A1, A2, A3 be the arithmetic means between \(\frac{1}{5}\) and \(\frac{1}{6}\).

Then, \(\frac{1}{5}\), A1 , A2 A3\(\frac{1}{6}\) from an A.P,

Where t1 = a = \(\frac{1}{5}\), t5 = a + 4d = \(\frac{1}{6}\)

∴ \(\frac{1}{5}\)+ 4d = \(\frac{1}{6}\) ⇒ 4d = \(\frac{1}{6}\) - \(\frac{1}{5}\) = \(-\frac{1}{30}\) ⇒ d = \(-\frac{1}{120}\)

∴ A1 = a + d = \(\frac{1}{5}\) + \(\bigg(-\frac{1}{120}\bigg)\) = \(\frac{23}{120}\)

A2 = a + 2d = \(\frac{1}{5}\) + 2 x\(\bigg(-\frac{1}{120}\bigg)\) = \(\frac{1}{5}\) - \(\frac{1}{60}\) = \(\frac{11}{60}\)

A3 = a + 3d = \(\frac{1}{5}\) + 3 x\(\bigg(-\frac{1}{120}\bigg)\) = \(\frac{1}{5}\) - \(\frac{1}{40}\) = \(\frac{7}{40}\)

∴ Required harmonic means are \(\frac{120}{23}\),\(\frac{60}{11}\)\(\frac{40}{7}\).



Discussion

No Comment Found