InterviewSolution
| 1. |
If cosecθ = 2x and cotθ = \(\frac{2}{x}\) , find the value of 2 \(\Big(x^2-\frac{1}{x^2}\Big)\) |
|
Answer» Given: cosecθ = 2x ⇒ x = \(\frac{ cosec θ}{2}\) ⇒ x2 = \(\frac{ cosec^2θ}{4}\) .........(1) And cotθ = \(\frac{2}{x}\) ⇒ x = \(\frac{2}{cotθ}\) ⇒ x2 = \(\frac{4}{cot^2θ}\) ⇒ \(\frac{1}{x^2}\) = \(\frac{cot^2θ}{4}\) .....(ii) To find: \(2\Big(x^2-\frac{1}{x^2}\Big)\) Consider \(2\Big(x^2-\frac{1}{x^2}\Big)\) = \(2\Big(\frac{cosec^2 θ}{4}-\frac{1}{x^2}\Big)\) [Using (i)] = \(2\Big(\frac{cosec^2 θ}{4}-\frac{cot^2 θ}{4}\Big)\) [Using (ii)] = \(2\Big(\frac{cosec^2 θ-cot^2 θ}{4}\Big)\) = \(\frac{1}{2}\) (cosec2θ – cot2θ) Now, as 1 + cot2θ = cosec2θ ⇒ 1 = cosec2 θ – cot2 θ ⇒ \(2\Big(x^2-\frac{1}{x^2}\Big)\) = \(\frac{1}{2}\) (cosec2θ – cot2θ) = \(\frac{1}{2}\) |
|