1.

If cosθ = \(\frac{3}{4}\), then find the value of 9tan2θ + 9.

Answer»

Given: cosθ = \(\frac{3}{4}\)

To find: 9 tan2θ + 9 

∵ secθ = \(\frac{1}{cosθ}\) = \(\frac{4}{3}\)

∴ sec2θ = \(\Big(\frac{4}{3}\Big)^2\)\(\frac{16}{9}\)

Also, we know that 1 + tan2θ = sec2θ

⇒ tan2θ = sec2θ - 1

=\(\frac{16}{9}\) - 1 = \(\frac{16-9}{9}\) = \(\frac{7}{9}\)

⇒ 9tan2θ + 9 = 9\(\Big(\frac{7}{9}\Big)\) + 9 = 7 + 9 = 16



Discussion

No Comment Found