InterviewSolution
Saved Bookmarks
| 1. |
If cosθ = \(\frac{3}{4}\), then find the value of 9tan2θ + 9. |
|
Answer» Given: cosθ = \(\frac{3}{4}\) To find: 9 tan2θ + 9 ∵ secθ = \(\frac{1}{cosθ}\) = \(\frac{4}{3}\) ∴ sec2θ = \(\Big(\frac{4}{3}\Big)^2\)= \(\frac{16}{9}\) Also, we know that 1 + tan2θ = sec2θ ⇒ tan2θ = sec2θ - 1 =\(\frac{16}{9}\) - 1 = \(\frac{16-9}{9}\) = \(\frac{7}{9}\) ⇒ 9tan2θ + 9 = 9\(\Big(\frac{7}{9}\Big)\) + 9 = 7 + 9 = 16 |
|