InterviewSolution
Saved Bookmarks
| 1. |
If n is an odd positive integer and (1 + x + x2 + x3)n = \(\sum_{r=0}^{3n} a_r \,x^r\), then a0 – a1 + a2 – a3 + ..... – a3n equals(a) –1 (b) 1 (c) 4n (d) 0 |
|
Answer» Answer : (d) 0 Given, (1 + x + x2 + x3)n = \(\sum_{r=0}^{3n} a_r\, x^r\) ⇒ (1 + x + x2 + x3)n = a0 + a1x + a2x2 + ..... + a3n x3n Putting x = –1 in the above-given equation, we have a0 – a1 + a2 – a3 + ..... – a3n = 0 |
|