1.

If n is an odd positive integer and (1 + x + x2 + x3)n = \(\sum_{r=0}^{3n} a_r \,x^r\), then a0 – a1 + a2 – a3 + ..... – a3n equals(a) –1 (b) 1 (c) 4n (d) 0

Answer»

Answer : (d) 0

Given, (1 + x + x2 + x3)n\(\sum_{r=0}^{3n} a_r\, x^r\)

⇒ (1 + x + x2 + x3)n = a0 + a1x + a2x2 + ..... + a3n x3n

Putting x = –1 in the above-given equation, we have

a0 – a1 + a2 – a3 + ..... – a3n = 0



Discussion

No Comment Found