1.

If ω ≠ 1 is a cube root of unity, show that (i) (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128 (ii) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)……(1 + ω2n) = 1

Answer»

(i) ω is a cube root of unity ω3 = 1; 

1 + ω + ω2 = 0 

(1 – ω + ω2)6 + (1 + ω – ω2)

= (-ω – ω)6 + (-ω2– ω 2)6 

= (-2ω)6 + (-2ω2)6 

= (-2)66 + ω12

= (64)(1 + 1) 

= 128

(ii) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8) …… (1 + ω2n

= (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8) ……. 2n factors 

= (-ω2)(-ω)(-ω2)(-ω) …… 2n factors 

= ω3 . ω3 

= 1



Discussion

No Comment Found