1.

If sec θ + tan θ = x, then sec θ =A. \(\frac{X^2+1}{X}\) B. \(\frac{X^2+1}{2X}\) C. \(\frac{X^2-1}{2X}\) D. \(\frac{X^2-1}{X}\)

Answer»

Given: secθ + tanθ = x …(i) 

To find: secθ 

We know that 1 + tan2θ = sec2θ 

⇒ sec2θ – tan2θ = 1 

∵ a2 – b2 = (a – b) (a + b) 

∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1

 ⇒ From (i), we have 

⇒ (secθ – tanθ) x = 1 

⇒ secθ – tanθ = \(\frac{1}{x}\) ...…(ii) 

Adding (i) and (ii), we get

secθ + secθ = \(X+\frac{1}{X}\) 

⇒ secθ =  \(\frac{X^2+1}{2X}\) 

⇒ secθ = \(\frac{X^2+1}{2X}\)



Discussion

No Comment Found