InterviewSolution
Saved Bookmarks
| 1. |
If sec θ + tan θ = x, then sec θ =A. \(\frac{X^2+1}{X}\) B. \(\frac{X^2+1}{2X}\) C. \(\frac{X^2-1}{2X}\) D. \(\frac{X^2-1}{X}\) |
|
Answer» Given: secθ + tanθ = x …(i) To find: secθ We know that 1 + tan2θ = sec2θ ⇒ sec2θ – tan2θ = 1 ∵ a2 – b2 = (a – b) (a + b) ∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1 ⇒ From (i), we have ⇒ (secθ – tanθ) x = 1 ⇒ secθ – tanθ = \(\frac{1}{x}\) ...…(ii) Adding (i) and (ii), we get secθ + secθ = \(X+\frac{1}{X}\) ⇒ secθ = \(\frac{X^2+1}{2X}\) ⇒ secθ = \(\frac{X^2+1}{2X}\) |
|