1.

If sec θ + tan θ = x, then tan θ =A. \(\frac{X^2+1}{X}\) B. \(\frac{X^2-1}{X}\) C. \(\frac{X^2+1}{2X}\) D. \(\frac{X^2-1}{2X}\)

Answer»

Given: sec θ + tan θ = x ...…(i) 

To find: tan θ 

We know that 1 + tan2θ = sec2θ 

⇒ sec2θ – tan2θ = 1 

∵ a2 – b2 = (a – b) (a + b) 

∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1 

⇒ From (i), we have 

⇒ (secθ – tanθ) x = 1 

⇒ secθ – tanθ = \(\frac{1}{X}\)………(ii) 

Subtracting (ii) from (i), we get

tanθ + tanθ = \(X-\frac{1}{X}\) 

2tanθ = \(\frac{X^2-1}{X}\) 

tanθ = \(\frac{X^2-1}{2X}\)



Discussion

No Comment Found