InterviewSolution
Saved Bookmarks
| 1. |
If sec θ + tan θ = x, then tan θ =A. \(\frac{X^2+1}{X}\) B. \(\frac{X^2-1}{X}\) C. \(\frac{X^2+1}{2X}\) D. \(\frac{X^2-1}{2X}\) |
|
Answer» Given: sec θ + tan θ = x ...…(i) To find: tan θ We know that 1 + tan2θ = sec2θ ⇒ sec2θ – tan2θ = 1 ∵ a2 – b2 = (a – b) (a + b) ∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1 ⇒ From (i), we have ⇒ (secθ – tanθ) x = 1 ⇒ secθ – tanθ = \(\frac{1}{X}\)………(ii) Subtracting (ii) from (i), we get tanθ + tanθ = \(X-\frac{1}{X}\) 2tanθ = \(\frac{X^2-1}{X}\) tanθ = \(\frac{X^2-1}{2X}\) |
|