1.

If \(\sqrt{a+ib}\) = x+iy, then possible value of\(\sqrt{a-ib}\) is A. x2 + y2B.  \(\sqrt{x^2 + y^2}\)C. x + iy D. x – iy E. \(\sqrt{x^2 - y^2}\)

Answer»

\(\sqrt{a+ib}\) = x+iy

Square both sides 

a + ib = (x + iy)2 = x2 + i2xy - y2 

So, we can say that a = x2 – y2 and b = 2xy 

a – ib = (x2 – y2) – i(2xy) 

= (x)2 + 2(x)(-iy) + (-iy)2 

= (x + (-iy))

= (x – iy)2

\(\sqrt{a-ib}\) = x-iy



Discussion

No Comment Found