InterviewSolution
Saved Bookmarks
| 1. |
If tanθ = \(\frac{12}{5}\) , find the value of \(\frac{1+sinθ}{1-sinθ}\) |
|
Answer» \(\frac{1+sinθ}{1-sinθ}\) = \(\frac{1+sinθ}{1-sinθ}\times \frac{1+sinθ}{1+sinθ}\) = \(\frac{(1+sinθ)^2}{1-sin^2θ}\) = \(\frac{(1+sinθ)^2}{cos^2θ}\) = sec2θ + tan2θ = tan2θ + 1 + tan2θ = 2 tan2θ + 1 = 2 x \(\Big(\frac{12}{5}\Big)^2+1\) \(\Big(∵tanθ=\frac{12}{5}\Big)\) = \(\frac{288}{25}+1\) = \(\frac{288+25}{25}\) = \(\frac{313}{25}\) |
|