1.

If tanθ = \(\frac{12}{5}\) , find the value of \(\frac{1+sinθ}{1-sinθ}\)

Answer»

\(\frac{1+sinθ}{1-sinθ}\) = \(\frac{1+sinθ}{1-sinθ}\times \frac{1+sinθ}{1+sinθ}\) 

\(\frac{(1+sinθ)^2}{1-sin^2θ}\) 

\(\frac{(1+sinθ)^2}{cos^2θ}\) 

= sec2θ + tan2θ

=  tan2θ + 1 +  tan2θ

= 2 tan2θ + 1

= 2 x \(\Big(\frac{12}{5}\Big)^2+1\)   \(\Big(∵tanθ=\frac{12}{5}\Big)\)

\(\frac{288}{25}+1\)

\(\frac{288+25}{25}\) = \(\frac{313}{25}\)



Discussion

No Comment Found