InterviewSolution
Saved Bookmarks
| 1. |
If the sum of the roots of the equation ax2 + bx + c = 0 is equal to sum of their squares, then \(\frac{c}{a},\frac{b}{a},\frac{c}{a}\) are in (a) A.P. (b) G.P (c) H.P (d) None of these |
|
Answer» (a) A.P. Let α, β be the roots of the equation ax2 + bx + c = 0. Then, α + β = \(-\frac{b}{a}\) , αβ = \(\frac{c}{a}\) Also, given α + β = α2 + β2 ⇒ α + β = (α + β)2 - 2αβ ⇒ \(-\frac{b}{a}\) = \(\bigg(-\frac{b}{a}\bigg)^2\) - \(\frac{2c}{a}\) ⇒ – ba = b2 – 2ac ⇒ b2 + ab = 2ac ⇒ b (b+ a) = 2ac ⇒ \(\frac{b}{c}\) + \(\frac{a}{c}\) = \(\frac{2a}{b}\) ⇒ \(\frac{c}{a},\frac{b}{a},\frac{c}{a}\) are in A.P. |
|