InterviewSolution
Saved Bookmarks
| 1. |
If x = cos3θ, y = bsin3θ,prove that\(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}=1\) |
|
Answer» x = acos3θ ⇒ \(\frac{x}{a}\) = cos3θ y = bsin3θ ⇒ \(\frac{y}{b}\) = sin3θ Now, \(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}\) = (cos3θ)2/3 + (sin3θ)2/3 = cos2θ +sin2θ = 1 \(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}\) = 1 |
|