1.

If x = cos3θ, y = bsin3θ,prove that\(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}=1\)

Answer»

x = acos3θ ⇒ \(\frac{x}{a}\) = cos3θ 

y = bsin3θ ⇒ \(\frac{y}{b}\) = sin3θ

Now, \(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}\) = (cos3θ)2/3 + (sin3θ)2/3

= cos2θ +sin2θ 

= 1

\(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}\) = 1



Discussion

No Comment Found