InterviewSolution
Saved Bookmarks
| 1. |
If x + i y = (1 + i) (1 + 2 i) (1 + 3i), then x2 + y2 = A. 0 B. 1 C. 100 D. None of these |
|
Answer» Given that (1 + i) (1 + 2i) (1 + 3i) = x + i y …(1) We can also say that (1 - i) (1 - 2i) (1 - 3i) = x - i y …(2) Multiply and divide the eq no. 2 with eq no. 1 \(\frac{ (1 + i) (1 - i)(1 + 2i)(1 - 2i)(1 + 3i)(1 - 3i)}{(1 - i) (1 - 2i) (1 - 3i)}\) = \(\frac{(x + i y)(x - i y)}{x - i y}\) ((1)2 – (i)2)((1)2 – (2i)2)((1)2 – (3i)2) = ((x)2 – (iy)2) x2 + y2 = 2 × 5 × 10 = 100 |
|