1.

If x2 (y + z), y2 (z + x), z2(x + y) are in A.P., then prove that either x, y, z are in A.P. or xy + yz + zx = 0.

Answer»

∵ x2(y + z), y2(z + x), z2(x + y) are in A.P.

∴ Adding xyz in each terms x2(y + z) + xyz, y2(z + x) + xyz, z2(x + y) + xyz also will be in A.P.

or x(xy + yz + zx), y(xy +yz + zx), z(xy + yz + zx)

also will be in A.P.

∴ 2y(xy + yz + zx) = x(xy + yz + zx) + z(xy + yz + zx)

⇒ 2y(xy + yz + zx) = (xy + yz + zx) (x + z)

⇒ 2y(xy + yz + zx) – (xy + yz + zx) (x + z) = 0

⇒ (xy + yz + zx) (2y – x – z) = 0

If  2y – x – z = 0

Then 2y = x + z

⇒ x, y, z are in A.P.

or xy + yz + zx = 0

Hence Proved.



Discussion

No Comment Found