InterviewSolution
Saved Bookmarks
| 1. |
If x2 (y + z), y2 (z + x), z2(x + y) are in A.P., then prove that either x, y, z are in A.P. or xy + yz + zx = 0. |
|
Answer» ∵ x2(y + z), y2(z + x), z2(x + y) are in A.P. ∴ Adding xyz in each terms x2(y + z) + xyz, y2(z + x) + xyz, z2(x + y) + xyz also will be in A.P. or x(xy + yz + zx), y(xy +yz + zx), z(xy + yz + zx) also will be in A.P. ∴ 2y(xy + yz + zx) = x(xy + yz + zx) + z(xy + yz + zx) ⇒ 2y(xy + yz + zx) = (xy + yz + zx) (x + z) ⇒ 2y(xy + yz + zx) – (xy + yz + zx) (x + z) = 0 ⇒ (xy + yz + zx) (2y – x – z) = 0 If 2y – x – z = 0 Then 2y = x + z ⇒ x, y, z are in A.P. or xy + yz + zx = 0 Hence Proved. |
|