1.

If `y=(1)/(log_(10)x)`, then what is `(dy)/(dx)` equal to?A. xB. `x log_(e)10`C. `-((log_(x)10)^(2)(log_(10)e))/(x)`D. `xlog_(10)e`

Answer» Correct Answer - C
Differentiating the given function, `y=(1)/(log_(10)x)`
We get, `(dy)/(dx)=-(1)/((log_(10)x)^(2)).(1)/(x)log_(10)e`
`rArr(dy)/(dx)=-((log_(x)10)^(2).log_(10)e)/(x)`


Discussion

No Comment Found