1.

If |z – 5i| = |z + 5i|, then find the locus of z.

Answer»

z = a + ib 

|a+ib-5i| = |a+ib+5i| 

|a+ib-5i|2 = |a+ib+5i|2 

|a +i(b-5)|2 = |a + i(b+5)|2 

a2+(b-5)2 = a2+(b+5)2 

a2+b2+25-10b = a2+b2+25+10b 

20b = 0 

b = 0 

b is a imaginary part of z

Im(z) = \(\frac{z-\bar z}{2}\)

= y 

= 0 

Im (z) = 0 

So, the locus point is real axis



Discussion

No Comment Found