1.

In a triangle `A B C ,`if `acosA=bcosB ,`show that the triangle is either isosceles or right angled.

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k (sky)"`
`rArr" "a=ksinAandb=ksinB`
`:." "acosA=bcosB`
`rArr" "ksinAcosA=ksinBcosB`
`rArr" "1/2(sin2A)=1/2(sin2B)`
`rArr" "sin2A=sin2B`
`rArr" "sin2A-sin2B=0`
`rArr" "2cos(A+B)sin(A-B)=0`
`rArr" "cos(A+B)=0orsin(A-B)=0`
rArr" "(A+B)=pi/2or(A-B)=0`
`rArr" "/_C=pi/2orA=B.`
Hence, `DeltaABC` is right-angled or isosceles.


Discussion

No Comment Found