InterviewSolution
| 1. |
Let a, b be two positive real numbers. If a, A1, A2, b are in arithmetic progression,a, G1, G2, b are in geometric progression and a, H1, H2, b are in harmonic progression, then show that \(\frac{G_1G_2}{H_1H_2}\) = \(\frac{A_1+A_2}{H_1+H_2}\) = \(\frac{(2a+b)(a+2b)}{9\,ab}\) |
|
Answer» a, A1, A2, b are in A.P. ⇒ A1 – a = b – A2 ⇒ A1 + A2 = a + b ...(i) a, G1, G2, b are in G.P. ⇒ \(\frac{G_1}{a}\) = \(\frac{b}{G_2}\) ⇒ G1 G2 = ab ....(ii) a, H1, H2, b are in H.P. ⇒ \(\frac{1}{a}\), \(\frac{1}{H_1}\), \(\frac{1}{H_2}\),\(\frac{1}{b}\) are in A.P. ⇒ \(\frac{1}{H_1}\)- \(\frac{1}{a}\) = \(\frac{1}{b}\) - \(\frac{1}{H_2}\) ⇒ \(\frac{1}{H_1}\) + \(\frac{1}{H_2}\) = \(\frac{1}{a}\) + \(\frac{1}{b}\) ⇒ \(\frac{H_1+H_2}{H_1H_2}\) = \(\frac{a+b}{ab}\) = \(\frac{A_1+A_2}{G_1G_2}\) (From (i) and (ii)) ⇒ \(\frac{G_1G_2}{H_1H_2}\) = \(\frac{A_1+A_2}{H_1+H_2}\). Hence proved. Now, \(\frac{1}{a}\), \(\frac{1}{H_1}\), \(\frac{1}{H_2}\) are in A.P (∵ a, H1, H2, are in H.P.) ⇒ \(\frac{1}{H_1}\) - \(\frac{1}{a}\) = \(\frac{1}{H_2}\) - \(\frac{1}{H_1}\) ⇒ \(\frac{2}{H_1}\) - \(\frac{1}{H_2}\) = \(\frac{1}{a}\) ......(iii) Also, \(\frac{1}{H_1}\), \(\frac{1}{H_2}\),\(\frac{1}{b}\) are in A.P (∵ H1, H2, b are in H.P.) ⇒ \(\frac{1}{H_2}\) - \(\frac{1}{H_1}\) = \(\frac{1}{b}\) - \(\frac{1}{H_2}\) ⇒ \(\frac{2}{H_2}\) - \(\frac{1}{H_1}\) = \(\frac{1}{b}\) .....(iv) Eq. (iii) + 2 x Eqn. (iv) ⇒\(\bigg(\)\(\frac{2}{H_2}\) - \(\frac{1}{H_1}\)\(\bigg)\) +\(\bigg(\)\(\frac{4}{H_2}\) - \(\frac{2}{H_1}\)\(\bigg)\)= \(\frac{1}{a}\) + \(\frac{2}{b}\) ⇒ \(\frac{3}{H_2}\) = \(\frac{b + 2a}{ab}\) ⇒ H2 = \(\frac{3ab}{2a+b}\) Eq. (iv) + 2 x Eq. (iii) ⇒ \(\bigg(\)\(\frac{2}{H_2}\) - \(\frac{1}{H_1}\)\(\bigg)\) +\(\bigg(\)\(\frac{4}{H_2}\) - \(\frac{2}{H_1}\)\(\bigg)\)= \(\frac{1}{b}\) + \(\frac{2}{a}\) ⇒ \(\frac{3}{H_1}\) = \(\frac{a + 2b}{ab}\) ⇒ H1 = \(\frac{3ab}{a+2b}\) ∴ \(\frac{G_1G_2}{H_1H_2}\) = \(\frac{ab}{\frac{3ab}{(a+2b)}\times\frac{3ab}{(2a+b)}}\) = \(\frac{(2a+b)(a+2b)}{9\,ab}\) Hence proved. |
|