InterviewSolution
Saved Bookmarks
| 1. |
Obtain the Cartesian equation for the locus of z = x + iy in each of the following cases. (i) |z – 4| = 16 (ii) |z – 4|2 – |z – 1|2 = 16 |
|
Answer» (i) z = x + iy |z – 4| = 16 ⇒ |x + iy – 4| = 16 ⇒ |(x – 4) + iy| = 16 = √((x - 4)2 + y2) = 16 Squaring on both sides (x – 4)2 + y2 = 256 ⇒ x2 – 8x + 16 + y2 – 256 = 0 ⇒ x2 + y2 – 8x – 240 = 0 represents the equation of circle (ii) |x + iy – 4|2 – |x + iy – 1|2 = 16 ⇒ |(x – 4) + iy|2 – |(x – 1) + iy|2 = 16 ⇒ [(x – 4)2 + y2] – [(x – 1)2 + y2] = 16 ⇒ (x2 – 8x + 16 + y2) – (x2 – 2x + 1 + y2) = 16 ⇒ x2 + y2 – 8x + 16 – x2 + 2x – 1 – y2 = 16 ⇒ -6x + 15 = 16 ⇒ 6x + 1 = 0 |
|