1.

Obtain the Cartesian equation for the locus of z = x + iy in each of the following cases. (i) |z – 4| = 16 (ii) |z – 4|2 – |z – 1|2 = 16

Answer»

(i) z = x + iy 

|z – 4| = 16

⇒ |x + iy – 4| = 16 

⇒ |(x – 4) + iy| = 16

= √((x - 4)2 + y2) = 16

Squaring on both sides 

(x – 4)2 + y2 = 256 

⇒ x2 – 8x + 16 + y2 – 256 = 0 

⇒ x2 + y2 – 8x – 240 = 0 represents the equation of circle

(ii) |x + iy – 4|2 – |x + iy – 1|2 = 16 

⇒ |(x – 4) + iy|2 – |(x – 1) + iy|2 = 16 

⇒ [(x – 4)2 + y2] – [(x – 1)2 + y2] = 16 

⇒ (x2 – 8x + 16 + y2) – (x2 – 2x + 1 + y2) = 16

⇒ x2 + y2 – 8x + 16 – x2 + 2x – 1 – y2 = 16 

⇒ -6x + 15 = 16 

⇒ 6x + 1 = 0



Discussion

No Comment Found