1.

Prove: (1 + cos θ) (1 − cos θ) (1 + cot2θ) = 1

Answer»

(1 + cos θ) (1 − cos θ) (1 + cot2θ) = 1

LHS: (1 + cos θ) (1 − cos θ) (1 + cot2θ)

= (1 – cos2 θ) × cosec2 θ

(Using sin2 θ + cos2 θ = 1)

= (sin2 θ) × cosec2 θ

= sin2 θ x 1/sin2 θ

= 1

= R.H.S.

Hence Proved



Discussion

No Comment Found