1.

Prove:(sec2 θ − 1)(cosec2 θ − 1) = 1

Answer»

Using identities, 

(sec2 θ − tan2 θ) = 1 and (cosec2 θ − cot2 θ) = 1 

We have, 

L.H.S = (sec2 θ – 1)(cosec2θ – 1) 

= tan2θ × cot2θ 

= (tan θ × cot θ)2 

= (tan θ × 1/tan θ)2 

= 12 

= 1 

= R.H.S 

Hence Proved



Discussion

No Comment Found