InterviewSolution
Saved Bookmarks
| 1. |
Prove: (sec2θ − 1) (cosec2θ − 1) = 1 |
|
Answer» (sec2θ − 1) (cosec2θ − 1) = 1 L.H.S. = (sec2 θ – 1)(cosec2 θ – 1) = (tan2θ) × cot2θ (using identity 1 + cot2 θ = cosec2 θ and 1 + tan2 θ = sec2 θ) = tan2θ x 1/tan2θ = 1 = R.H.S. Hence Proved. |
|