InterviewSolution
Saved Bookmarks
| 1. |
Prove: (sec2θ − 1) cot2θ = 1 |
|
Answer» (sec2θ − 1) cot2θ = 1 L.H.S. = (sec2 θ – 1) × cot2 θ = (tan2θ) x cot2θ (using identity 1 + tan2 θ = sec2 θ) = 1/cot2θ x cot2θ = 1 = R.H.S. Hence Proved. |
|