1.

Prove: (sec2θ − 1) cot2θ = 1

Answer»

(sec2θ − 1) cot2θ = 1

L.H.S. = (sec2 θ – 1) × cot2 θ

= (tan2θ) x cot2θ

(using identity 1 + tan2 θ = sec2 θ)

= 1/cot2θ x cot2θ

= 1

= R.H.S.

Hence Proved.



Discussion

No Comment Found