1.

Prove that 6i50 + 5i33 – 2i15 + 6i48 = 7i.

Answer»

Given: 6i50 + 5i33 – 2i15 + 6i48

To prove: 6i50 + 5i33 – 2i15 + 6i48 = 7i

⇒ 6i4×12+2 + 5i4×8+1 – 2i4×3+3 + 6i4×12

⇒ 6i2 + 5i1 – 2i3 + 6i0

⇒ -6+5i+2i+6

⇒ 7i

⇒ L.H.S. = R.H.S.

Hence proved.



Discussion

No Comment Found