InterviewSolution
Saved Bookmarks
| 1. |
Prove the following trigonometric identities:(1+cotA - cosecA)(1 + tanA + secA) = 2 |
|
Answer» = \(\Big(1+\frac{cosθ}{sinθ}-\frac{1}{sinθ}\Big)\) \(\Big(1+\frac{cosθ}{sinθ}+\frac{1}{sinθ}\Big)\) = \(\Big(\frac{sinθ+cosθ-1}{sinθ}\Big)\) \(\Big(\frac{cosθ+sinθ+1}{cosθ}\Big)\) = \(\frac{[(sinθ+cosθ)-1][(sinθ+cosθ)+1]}{sinθ.cosθ}\) = \(\frac{(sinθ+cosθ)^2-(1)^2}{sinθ.cosθ}\) = \(\frac{sin^2θ+cos^2θ+2sinθcosθ-1}{sinθ.cosθ}\) = \(\frac{1+2sinθcosθ-1}{sinθ.cosθ}\) = \(\frac{2sinθcosθ}{sinθ.cosθ}\) = 2 = R.H.S Hence Proved. |
|