1.

Prove the following trigonometric identities:\(\frac{cosecA}{cosecA-1}+\frac{cosecA}{cosecA+1}\) =2sec2A

Answer»

\(\frac{cosecA}{cosecA-1}+\frac{cosecA}{cosecA+1}\) 

\(\frac{cosecA(cosecA+1)+cosecA(cosecA-1)}{cosec^2A-1}\) 

\(\frac{cosec^2A+cosecA+cosec^2A-cosecA}{cosec^2A-1}\) 

= \(\frac{2cosec^2A}{cot^2A}\) = \(\frac{2}{sin^2A}\times \frac{sin^2A}{cos^2A}\) = 2sec2A

Hence Proved.



Discussion

No Comment Found