1.

Prove the following trigonometric identities:\(\frac{cos^2θ}{sin θ}-cosec θ+sin θ=0\)

Answer»

\(\frac{cos^2θ}{sin θ}-cosec θ+sin θ \) = \(\frac{cos^2θ} {sin θ}-\frac{1}{sin θ}+sinθ\)

=  \(\frac{cos^2θ-1+sin^2θ} {sin θ}\)  

\(\frac{(cos^2θ+sin^2θ)-1}{sinθ}\) 

\(\frac{1-1}{sin θ}\)  =0

Hence Proved.



Discussion

No Comment Found