InterviewSolution
Saved Bookmarks
| 1. |
Prove the following trigonometric identities:sin2A cos2B - cos2Asin2B = sin2A - sin2B |
|
Answer» To prove: sin2A cos2B - cos2Asin2B = sin2A - sin2B Proof: Take LHS, Use the identity sin2θ+cos2θ=1 sin2A cos2B - cos2A sin2B = sin2A(1 – sin2B) – (1 – sin2A)sin2B sin2B – sin2B + sin2A sin2B = sin2A – sin2B = RHS Hence Proved |
|