1.

Prove the following trigonometric identities:\(\sqrt{\frac{1-cosθ}{1+cosθ}}\) = cosecθ - cotθ

Answer»

 \(\sqrt{\frac{1-cosθ}{1+cosθ}}\) = \(\sqrt{\frac{1-cosθ}{1+cosθ}\times\frac{1-cosθ}{1-cosθ}}\)

\(\sqrt{\frac{(1-cosθ)^2}{1-cos^2θ}}\)

=  \(\sqrt{\frac{(1-cosθ)^2}{sin^2θ}}\)

\(\frac{1-cosθ}{sinθ}\)

\(\frac{1}{sinθ}-\frac{cosθ}{sinθ}\)

= cosecθ-cotθ

Hence Proved.



Discussion

No Comment Found