InterviewSolution
Saved Bookmarks
| 1. |
Prove the following trigonometric identities:\(\sqrt{\frac{1-cosθ}{1+cosθ}}\) = cosecθ - cotθ |
|
Answer» \(\sqrt{\frac{1-cosθ}{1+cosθ}}\) = \(\sqrt{\frac{1-cosθ}{1+cosθ}\times\frac{1-cosθ}{1-cosθ}}\) = \(\sqrt{\frac{(1-cosθ)^2}{1-cos^2θ}}\) = \(\sqrt{\frac{(1-cosθ)^2}{sin^2θ}}\) = \(\frac{1-cosθ}{sinθ}\) = \(\frac{1}{sinθ}-\frac{cosθ}{sinθ}\) = cosecθ-cotθ Hence Proved. |
|