InterviewSolution
Saved Bookmarks
| 1. |
Prove the following trigonometric identities:\(\sqrt{\frac{1+sinA}{1-sinA}}\) = secA + tanA |
|
Answer» \(\sqrt{\frac{1+sinA}{1-sinA}}\) = \(\sqrt{\frac{1+sinA}{1-sinA}}\times \sqrt{\frac{1+sinA}{1+sinA}}\) = \(\sqrt{\frac{(1+sinA)^2}{1-sin^2A}}\) = \(\sqrt{\frac{(1+sinA)^2}{cos^2A}}\) = \(\frac{1+sinA}{cosA}\) = \(\frac{1}{cosA}+\frac{sinA}{cosA}\) = secA + tanA Hence Proved. |
|