1.

Use factor theorem to verify that `x+a`is a factor of `x^n+a^n`for any odd positive integer.

Answer» `(-1)*(-1)=`
`1*(-1)=(-1)`
`(-1)*(-1)*(-1)=(-1)^3=(-1)`
`(-1)^n=1` when n is even
`(-1)^n=-1` when n is odd.
`f(x)=x^n+a^n`
`x=-a`and then Remainder=0
`f(-a)=(-a)^n+a^n`
`=(-a)^n(a)^n+a^n`
`=a^n[1-(-1)^n]=0`
`1+(-1)^n=0`
`(-1)^n=-1`
It is possible only when n is odd.


Discussion

No Comment Found