1.

Which of the following is correct for any two complex numbers z1 and z2?A. |z1 z2| = |z1||z2|B. arg (z1z2) = arg (z1). Arg (z2)C. |z1 + z2| = |z1|+ |z2|D. |z1 + z2| ≥ |z1| – |z2|

Answer»

D. |z1 + z2| ≥ ||z1| - |z2|

Let z1 = |z1| (cos θ1 + i sin θ1) and z2 = |z2| (cos θ2 + i sin θ2)

Now, z1z2 = |z1| |z2| (cos θ1 + i sin θ1) (cos θ2 + i sin θ2)

= |z1| |z2| [cos θ1 cos θ2 + i sin θ1 cos θ2 + i cos θ1 sin θ2 + i2 sin θ1 sin θ2]

= |z1| |z2| [cos (θ1 + θ2) + i sin (θ1 + θ2)]

⇒ |z1 z2| = |z1| |z2|

And arg (z1 z2) = θ1 + θ2 = arg (z1) + arg (z2)

⇒ |z1 + z2| = |z1| + |z2| is true only when z1, z2 and O are collinear.

Also, |z1 + z2| ≥ ||z1| - |z2|



Discussion

No Comment Found